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Abstract

This paper considers the computational complexity of the design of voting rules,

which is formulated by simple games. We prove that it is an NP-complete problem to

decide whether a given simple game is stable, or not.
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1 Introduction

1.1 Motivation

This paper considers the design of voting rules from the viewpoint of computational com-

plexity. In many real-life organizations, people have to design some rules to make collective

decisions. In designing such a rule, the designer has to check beforehand whether the de-

signed rule works properly. For example, the designer has to check whether the rule

outputs an appropriate decision for every possible input. However, such checking may be

a computationally daunting task. In this paper, we examine such computational problems

in the case where the voting setting is formulated by the familiar concept of simple games

(Nakamura 1975). In discussing the “hardness” of computation, we utilize the well-known

concept of NP-hardness from computational complexity theory.

Consider a group of people who want to set up a voting rule for their own use. Then

there are at least two requirements that the group would want to impose on the rule.

First, the group would want the rule to properly reflect the distribution of “decision

power” within the group specified in advance. For example, in a stockholders’ meeting, it

is usually required that the larger the share one has, the bigger the “decision power” the

one is given. This may be embodied as the number of votes distributed proportional to

the share.

Second, the group would want the rule to work for any conceivable case, that is, for

any combination of preferences of the members of the group. For example, the simple
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majority rule can always output winners for any votes (though there can be ties). On

the contrary, the Condorcet winner rule does not always output winners. It would not be

desirable for the group to have decision rules like the latter.

In this paper, we adopt the formulation in terms of simple games. A simple game

represents a “power distribution” in the group in a very simple way: Each subgroup is

categorized as “powerful” or “not powerful.” Formally, a simple game is the list of the

subgroups that are labeled “powerful.”

Provided that the power distribution is given by a simple game, let us consider the

two requirements which we imposed on the voting rule in the above. To meet the first

requirement, we require the voting rule to be a subcorrespondence of the core of the simple

game. The core is the set of alternatives which cannot be blocked by any “powerful”

subgroups. That is to say, the core is those alternatives which do not confront with any

effective oppositions given the power structure described by the simple game. To fulfill

the second requirement, the core has to be nonempty for every combination of preferences

that the members of the group may have. If the core of a simple game has this property,

then the simple game is called stable. Therefore, our question in designing a voting rule

is summed up to whether the underlying simple game is stable, or not.

1.2 Results

From the discussion in the above, it is essential to check whether any given simple game

is stable, or not. The question we ask in this paper is how computationally complex

this checking is. We prove that it is an NP-complete problem to decide whether a given

simple game is stable or unstable. In fact, we prove that the problem is NP-complete not

only in the general case but in the special case in which the set of “powerful” subgroups

consists only of “large” subgroups. Restricting “powerful” subgroups to “large” ones is

natural because in many real-life situations, power is assigned only to “large” subgroups.

In our proofs, we utilize the result proved by Nakamura (1979) that gives a necessary and

sufficient condition for stability.

The significance of our results is that they cast a practical limit on the availability

of stable voting rules. Our results suggest that there would be some cases in which the

designer of the voting rule cannot check the performance of the rule in a practical sense.

This fact restricts those simple games which are available for practical use.

We note that our proofs are mathematically trivial: They follow immediately from

known results. Nonetheless, we consider our results important in that they answer some

basic questions regarding computational aspects of voting theory. We believe that our

results are worth reporting to the readers in voting theory, rather than those in computa-

tional complexity theory.

2 Preliminaries

2.1 NP-completeness

For those not familiar with computational complexity, the following is only a brief and

informal description of NP-completeness. For detailed exposition, Garey and Johnson

(1979) is a classical reference. A newer and concise presentation is Chapter 2 of Arora

and Barak (2009).
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A decision problem (problem, henceforth) is a problem which is to be answered in

“yes” or “no.” A problem consists of the descriptions of

(i) instance, which is the free parameters of the problem, and

(ii) question, which is to be answered in “yes” or “no.”

The answer to the question depends on the values of the free parameters. An instance

refers to one set of values of these parameters.

Consider a problem. We say that an algorithm solves this problem if (i) the algorithm

outputs “yes” if, and only if, the input is an instance for which the answer to the problem

is “yes,” and (ii) otherwise the algorithm outputs “no.”1 Then we say that the problem

belongs to the class P if there is an algorithm that solves the problem in polynomial time,

that is, the maximum time (the maximum number of steps) taken to answer the question

is bounded by some fixed polynomial in the size of the instance (the length of the input).

We say that the problem belongs to the class NP if there is an algorithm that verifies

the answer to the problem in polynomial time, that is, if there is a polynomial-time

algorithm such that for any given instance, the answer to the question is “yes” if, and

only if, there is a certain additional input, called a certificate, with which this algorithm

outputs “yes.” Here the certificate has to be a polynomial length in the size of the instance.

It is straightforward that P ⊂ NP. At the present time, however, it is unknown

whether P = NP, or not. This is one of the fundamental problems in computer science

and mathematics. (See Cook (2000).) It is widely believed that P ̸= NP.

Let L1 and L2 be problems. We say that L1 is polynomial-time reducible to L2 if

(i) there exists a function f that transforms any instance x of L1 into the instance f(x)

of L2 such that the answer to L1 for the instance x is “yes” if, and only if, the answer

to L2 for the instance f(x) is “yes,” and

(ii) the function f is embodied by a polynomial-time algorithm.

Intuitively, L2 is at least as hard as L1; if you can solve L2, then you can also solve L1

by transforming the instances of L1 into those of L2, and the transformation itself is not

difficult. Denote this relation by L1 ≤p L2. Note that ≤p is transitive.

A problem L1 is called NP-hard if for any L2 ∈ NP, L2 ≤p L1. Further, L1 is called

NP-complete if L1 is NP-hard and L1 ∈ NP. Intuitively, a problem being NP-complete

means that the problem is one of the “hardest” among all NP problems. A problem being

NP-hard means that it is at least as hard as NP-complete problems.

There are numerous problems which are known to be NP-complete. One method

which is often used in proving a certain problem L1 is NP-hard is reduction. This is done

by the following steps:

(i) Specify a known NP-complete problem L2.

(ii) Show L2 ≤p L1 by giving a concrete polynomial-time transformation.

To prove L1 is NP-complete, we additionally show L1 ∈ NP. We will utilize this method

in the sequel.

1In this paper, by the term “algorithm,” we mean “deterministic algorithm.” That is, we exclude such

algorithms which utilize randomness. We are not going into the formal definitions of these concepts here.
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Given a problem L, the complementary problem L̄ of L is the problem which has

the same free parameters but has the opposite question to L. That is, if L asks if ∃x : p(x),

then L̄ asks if ∀x,¬p(x). First, we note that if a problem L is NP-complete, then L̄ is

NP-hard since L is reducible to L̄ (i.e. L ≤p L̄) by flipping the output. Let coNP denote

the set of problems L for which L̄ ∈ NP. It holds true that P ⊂ coNP. It is an open

problem whether coNP = NP or not. In fact, this is related to the P = NP problem:

coNP ̸= NP implies P ̸= NP. Further, if there exists an NP-complete problem L

such that L̄ ∈ NP, then coNP = NP. (Theorem 7.2 in Garey and Johnson (1979) p.

156.) Thus if a problem is NP-complete, then it is not known whether its complementary

problem belongs to NP or not.

2.2 Simple games

A simple game is a list G = (N,W ,Ω). Here N is a nonempty finite set of individuals.

A coalition is a nonempty subset of N . W is a nonempty class of coalitions. Any element

of W is called a winning coalition. Ω is a nonempty finite set of alternatives.

A preference relation of individual i ∈ N is an acyclic binary relation ≻i on Ω.2 For

x, y ∈ Ω, x ≻i y means “i strictly prefers x to y.” We denote a combination of preferences

of all individuals (≻i)i∈N by ≻.

Let a simple game and a combination of preferences (G ,≻) be given. Let x, y ∈ Ω.

Then we say that x is blocked by S with y if

∀i ∈ S, y ≻i x.

The core of (G ,≻) is the set of alternatives which are not blocked by any coalitions with

any alternatives.

A simple game G is called stable if the core of (G ,≻) is nonempty for any combination

of preferences ≻. One of the fundamental questions in the theory of simple games is

whether a given simple game is stable, or not. Nakamura (1979) gave the answer to this

question by providing a necessary and sufficient condition for stability in terms of the

“Nakamura number.”

Call a simple game G weak if
∩

W ̸= ∅. Let G be a simple game which is not weak.

Then the Nakamura number V (W ) of G is

V (W ) = min
{
#σ | ∅̸=σ ⊂ W ,

∩
σ = ∅

}
.

We will utilize the following well-known theorem for proving our results.

Theorem 1 (Nakamura, 1979) Let a simple game G = (N,W ,Ω) be given. Then G is

stable if, and only if, (i) G is weak, or (ii) #Ω < V (W ).

For a general and comprehensive analysis of the Nakamura number, consult Kumabe

and Mihara (2008a).

2A binary relation ≻i on Ω is called acyclic if for any natural number m, any m elements x1, x2, · · · , xm

of Ω, if x2 ≻i x1, x3 ≻i x2, · · · and xm ≻i xm−1, then x1 ̸≻i xm.
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3 Results

Let us define the problem that we will examine.

Name: UNSTABILITY.

Instance: A nonempty finite setN ; A nonempty collection W = {W1, · · · ,Wm}
of nonempty subsets of N ; A nonempty finite set Ω.

Question: Is the simple game G = (N,W ,Ω) not stable?

Note that the question in the above problem is asking whether the simple game is not

stable, that is, the answer is “yes” if, and only if, the simple game is not stable. Let us

refer to the complementary problem of UNSTABILITY as STABILITY. One may think

that STABILITY, rather than UNSTABILITY, is the natural question to ask. However,

as we will see, here we cannot decide whether STABILITY belongs to NP, or not, whereas

we prove that UNSTABILITY is in NP (see just below Theorem 2).

Although UNSTABILITY is our primary problem, we consider an easier version of

UNSTABILITY so that we will obtain stronger results. In this easier version, winning

coalitions are restricted to “large” coalitions. Here, by a coalition being “large,” we mean

that the number of individuals in the coalition is no less than the total population minus

k (where k is a natural number given in advance) if the total population is more than

k. This restriction is natural because in many real-life situations, power is assigned only

to subgroups larger than a particular size. Although this restriction may seem to reduce

the difficulty of the problem, as we will prove, this easier version is in fact as difficult

as the original problem if k ≥ 3. We refer to this easier version of the problem as k-

UNSTABILITY, and its complementary problem as k-STABILITY. Let us define this

problem formally. Let a natural number k be given.

Name: k-UNSTABILITY.

Instance: A nonempty finite setN ; A nonempty collection W = {W1, · · · ,Wm}
of nonempty subsets of N with for all i = 1, · · · ,m, #Wi ≥ #N−k if #N > k;

A nonempty finite set Ω.

Question: Is the simple game G = (N,W ,Ω) not stable?

Obviously, for any k, k-UNSTABILITY≤pUNSTABILITY. Also, it is straightforward

that if k′ ≤ k, then k′-UNSTABILITY≤p k-UNSTABILITY.

In the following, we prove that 3-UNSTABILITY is NP-complete.

Lemma 1 3-UNSTABILITY is NP-hard.

Proof. The proof is done by reduction from the following known NP-complete problem

([SP5] in Garey and Johnson (1979)).

Name: 3-MINIMUM COVER.

Instance: A finite set S; A nonempty collection C = {C1, · · · , Cm} of subsets

of S with for all i = 1, · · · ,m, #Ci ≤ 3; a natural number r with r ≤ m.

Question: Does there exist a collection D such that D ⊂ C , #D ≤ r, and∪
D = S?

Let an instance (S,C , r) of 3-MINIMUM COVER be given. Let us construct an

instance of 3-UNSTABILITY (i.e. a simple game) G = (N,W ,Ω) as follows: Let N :=

S ∪ {i⋆} with i⋆ ̸∈ S. And let W := {N \ C | C ∈ C } ∪ {S} and Ω := {1, 2, · · · , r + 1}.
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Note that N and all elements of W are nonempty since in defining N we have added

i⋆ to S. Also note that for any W ∈ W , it holds i⋆ ∈ W if, and only if, W ̸= S. Clearly, if

#N = #S + 1 > 3, then ∀W ∈ W , #W ≥ #N − 3, i.e. W consists of “large” coalitions

only. And we have the following relations:∪
C = S ⇔

∩
W = ∅, (1)∪

C = S ⇒ min
{
#D | D ⊂ C ,

∪
D = S

}
+ 1 = V (W ) (2)

Suppose that the answer to 3-MINIMUM COVER for this instance is “yes.” Then we

have
∪

C = S and min{#D | D ⊂ C ,
∪

D = S} ≤ r. This implies that the simple game

constructed in the above is not weak by (1), and that V (W ) ≤ r + 1 = #Ω by (2). Then

by Theorem 1, the simple game is not stable so the answer to 3-UNSTABILITY for this

instance is “yes.”

Suppose that the answer to 3-UNSTABILITY is “yes,” i.e. the constructed simple

game is not stable. Then by Theorem 1, it follows that the simple game is not weak and

that V (W ) ≤ #Ω = r + 1. By (1) and (2), this implies
∪

C = S and min{#D | D ⊂
C ,

∪
D = S} ≤ r, that is, the answer to 3-MINIMUM COVER is “yes.” 2

Lemma 2 UNSTABILITY and k-UNSTABILITY with any k belong to NP.

Proof. Because k-UNSTABILITY≤pUNSTABILITY, it suffices to prove UNSTABILITY∈
NP. Let an instance (N,W ,Ω) of UNSTABILITY be given. Then by Theorem 1, the

answer to the problem is “yes” for this instance if, and only if, there exists a class of

coalitions σ such that

∅ ̸= σ ⊂ W ,
∩

σ = ∅ and #σ ≤ #Ω. (3)

Then the class σ constitutes the certificate. And the time taken to check whether σ

satisfies (3) grows only linearly. Thus it is checkable in polynomial time. 2

Remark 1 2-UNSTABILITY belongs to P. This is because of the following two facts:

(i) There is a polynomial time algorithm for solving “2-MINIMUM COVER,” the natural

variant of 3-MINIMUM COVER, that is, the problem of checking if there is a cover of

S in the family of subsets C of S with #C ≤ 2 for all C ∈ C . (See [SP5] in Garey and

Johnson (1979)); (ii) 2-UNSTABILITY≤p 2-MINIMUM COVER.

From Lemmas 1 and 2, we have the following conclusion.

Theorem 2 UNSTABILITY and k-UNSTABILITY with k ≥ 3 are all NP-complete.

As mentioned in Sec. 2.1 (in the last paragraph), it is unknown if coNP = NP or not.

And if there exists some NP-complete problem whose complementary problem belongs to

NP, then coNP = NP. (Theorem 7.2 in Garey and Johnson (1979) p. 156). Thus it is

not known if STABILITY belongs to NP or not. We have only the following.

Corollary 1 STABILITY and k-STABILITY with k ≥ 3 are all NP-hard.

Recall that in k-UNSTABILITY (and k-STABILITY) we have restricted winning coali-

tions to “large” coalitions. Now let us consider an alternative formulation of “largeness”
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of coalitions; we define “large” coalitions as those which exceed in size some fixed pro-

portion q of the total population. This formulation may be more natural than the one in

k-UNSTABILITY. Let us formally define this problem. Let a number q with 0 ≤ q < 1

be given.

Name: QUOTAq-UNSTABILITY.

Instance: A nonempty finite setN ; A nonempty collection W = {W1, · · · ,Wm}
of nonempty subsets of N with for all i = 1, · · · ,m, #Wi ≥ q#N ; A nonempty

finite set Ω.

Question: Is the simple game G = (N,W ,Ω) not stable?

Corollary 2 For any q with 0 ≤ q < 1, QUOTAq-UNSTABILITY is NP-complete.

Proof. First, we prove UNSTABILITY≤pQUOTAq-UNSTABILITY, which establishes

the NP-hardness of QUOTAq-UNSTABILITY. Let an instance of UNSTABILITY G =

(N,W ,Ω) be given. Let us construct an instance of QUOTAq-UNSTABILITY G ′ =

(N ′,W ′,Ω′) as follows: Let M be a finite set disjoint with N such that #M ≥ q(#N +

#M). Let N be the set of coalitions {N ∪ (M \ {j}) | j ∈ M}. Then let N ′ := N ∪M ,

W ′ := {W ∪M | W ∈ W } ∪ N and Ω′ := {1, 2, · · · ,#Ω+#M}.
Note that for any W ∈ W ′, #W ≥ #M thus #W ≥ q#N ′ i.e. W ′ satisfies the quota

condition. N is constructed in the way that
∩

N = N but the intersection of any proper

subset N ′ of N contains not only N but some elements of M . On the other hand, clearly,

each element W in W corresponds to the element W ∪M in W ′\N . Thus for any σ ⊂ W ,

there is the natural counterpart σ′ ⊂ W ′ \N , and it holds
∩

σ′ =
∩

σ∪M . Thus
∩

σ = ∅
if, and only if, (

∩
σ′) ∩ (

∩
N ) = ∅. Note that #N = #M . Therefore, if G and G ′ are

not weak, then

V (W ) + #M = V (W ′). (4)

Also, G is weak if, and only if, G ′ is weak,

Suppose that the answer to the UNSTABILITY instance is “yes.” That is, G is not

stable, i.e. by Theorem 1, G is not weak and V (W ) ≤ #Ω. Then it is immediate that G ′

is not weak, and the relation (4) implies V (W ′) ≤ #Ω′. Thus G ′ is not stable, i.e. the

answer to the QUOTAq-UNSTABILITY instance is “yes.” Next, suppose that the answer

to the QUOTAq-UNSTABILITY instance is “yes.” Then similarly to the above case, we

have that the answer to the UNSTABILITY instance is “yes.”

Second, we show QUOTAq-UNSTABILITY ∈ NP. This is immediate from QUOTAq-

UNSTABILITY≤pUNSTABILITY, and UNSTABILITY ∈ NP by Lemma 2. Therefore,

we conclude that the problem is NP-complete. 2

4 Related studies

Remark 2 Many works examine those computational problems which arise in various

models of coalitional games when preferences are given. For example, some studies consider

the problem of determining whether the core is nonempty, or whether a given outcome is

in the core (e.g. Conitzer and Sandholm 2006, Kumabe and Mihara 2008b). The present

work should be carefully distinguished from this type of research. Our problems ask to

determine whether a given game is such that the core is nonempty for every combination

of preferences, not a given combination of preferences.
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Remark 3 Bartholdi, Narasimhan and Tovey (1991) is related to our work. Whereas

our interest is in simple games, a general model, they study spatial voting games, a more

specific model. They show that it is an NP-complete problem to check the unstability

of q-weighted majority voting games. This class of voting games is a subclass of simple

games. However, the NP-hardness of UNSTABILITY, one of our results, is not immediate

from their result because their games have a different representation: In their problem of

the unstability of q-weighted majority voting games, the instance of the problem is a list

of weights assigned to individuals and the quota q. The size of these data grows only in

linear order as the number of individuals gets larger. On the other hand, in our problem

UNSTABILITY, the instance is the list of winning coalitions, which grows exponentially.

Remark 4 One may object that the simple game is too simple a representation of power

distribution. The “effectivity function,” which is a generalization of the simple game,

is a more elaborate expression of power distribution. The computational complexity of

determining the unstability of effectivity functions was proved to be NP-complete by

Mizutani, Hiraide and Nishino (1993) and Boros and Gurvich (2000). Similarly to the

case in Remark 3, effectivity functions have a different representation from simple games

thus their result has no direct relations to ours.
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9


